

CDF at Argonne

Larry Nodulman
May 12, 2004
DOE Review of ANL/HEP

CDF Physics

- Fantastic B physics prospects including non B_d;
 mixing and spectroscopy (B_s Mixing eventually)
- Greater precision EWK (m(W) m(t)), searches
- Advance QCD studies including PDFs
- Higgs search would have been icing
- "Run till LHC is doing physics"
- Expectations still excellent sample keeps on doubling, get to 40 times run 1

Current CDF Status

- Physics samples 250 pb⁻¹, mostly with silicon, 90 more with compromised COT
- Luminosity has been growing 7 x10³¹ best
- Detectors OK for most physics
- L2 trigger for jets, e/γ , track impact working, Trigger OK to >5 x10³¹ (better if COT on)
- Silicon: SVX 90%, includes L00
- DAQ eff. OK, offline keeps up 2 passes
- Tracking algorithms still improving

A Note on COT Reduced Data

Hydrocarbons coating wires locally with luminosity - stagnant gas?

Tower map
of 8 GeV e
calib triggers
Φ twice around
Local eta
outside up

- Last 90 pb⁻¹ SL1,2 (3) off, 4,5 50% gain
- Trigger modified to ignore 2, take 9/12 in 4 -local problem
- Rate capabilities somewhat reduced
- Could do most physics but local inefficiency (particularly in the trigger) will make it difficult
- Hope to fix soon enough not to worry too much about optimizing living with it
- Will try gas flow upgrade this week. Additives? ArCO2?

Note on Silicon Survival

Φ

Black on, green good, red/pink bad

Trigger coverage remains fairly complete

Half barrel (z)

Two thirds of central tracks when no beam incidents

L. Nodulman ANL/CDF 5/12/04

Performance So Far

TeV ahead of 04 plan till lately

CDF a bit distracted by COT issues and threats to silicon

Expectations: Long Term

From last DOE review (Spaulding)

Argonne Support for the Tevatron

- Some years ago Herman Grunder declared Argonne support for the TeV Collider
- This has involved effort outside/inside HEP
- Curently 3 efforts in HEP Division:
 - Wei Gai e cool support LDRD funded
 - Jim Norem booster development LDRD funded
 - Bill Ashmanskas digital damper Compton
 Fellow/Cornell (CDF author @ ANL)

Comment on Prospects

- Sample size is now big enough to be interesting
- Sample should keep doubling till 08 continues to be interesting downright exciting!
- Sample will be big enough to find effects for which run 1 had no hint
- Should have opportunity to make good use of CPR upgrade
- Gas change should restore COT if plumbing upgrade is not sufficient
- B triggers ok if COT ok although strategy will evolve with luminosity
- We are committed to holding up our end and we all have someplace else to go (FTE declining)
- Continuation ideas being floated (gluons, b's ...) but nothing so far to distract us from post CDF plans
- Run till LHC physics program, publish last papers, fade away 30+ years
- Personally, this is as good as it gets, better if we find something ...

Argonne Role in CDF

- Past physics
 - Leaders in developing B physics program
 - Leaders in photon physics, QCD and searches
 - Leaders in precision EWK (m(W))
 - Filled about 10% of Physics Convener 2 year terms
- Run II Operation Support
 - Take key responsibilities as needs grow (Management, shift leaders, SubProject Leaders)
 - Tune up Central EM Calorimeter
 - Maintain Shower Max Electronics
 - Support the Level 2 Trigger
 - Pager support for cal, shower max electronics, shower max HV, shower max trigger, ISO trigger
- Preshower and crack upgrade

CDF Management Long Term OPS Concerns

HEPAP presentation: need 109 FTE ops 200+ analysis

New round of MOUs

CDF

Spokes

Argonne Leadership CDF

- Deputy Head of CDF Operations (Proudfoot, Tanaka)
- Calorimeter Group co-head (SPL) (Nodulman)
- Electron/calorimeter offline reconstruction (Wagner)
- Physics Group Reps at Trigger/Dataset Working Group (Wicklund (B), Nodulman (top/EWK))
- B Physics subgroups: LeCompte, Tanaka
- Retired QCD Physics co-convener (Blair)
- Dijet mass group (Kuhlmann)
- Run IIb Calorimeter (CPR/CEM timing) upgrade L2 Manager (Kuhlmann)
- Head godparent for lepton + jets top mass (Nodulman)

Preradiator Upgrade Project Wedge Front Face

Now: preradiator wires (16 x 2) along z, crack pads match towers, crack chambers ~80% functional

54 sigma tiles read out same as plug shower max/prerad., no frame, crack also scintillator

Argonne collaborating with MSU, Tsukuba, INFN (Pisa, Rome, Trieste, Padova), Dubna, Rockefeller, FNAL

Why Upgrade?

- Retain preshower γ and e (particularly soft) ID
- Optimize preshower data for dijet resolution (H, searches)
- Better crack coverage would help dijet (H)
- Can install in the pit, scaffolding made (survives silicon upgrade)

Practical 2b Implications

- Design work here (Jim Grudzinski) (MOU)
- Russian plastic, Japanese multianode PMTs, Italian HV, recycle readout electronics (existing and external resources)
- Assembly (here) started now with guests
 - Preradiator and crack packages
 - Transition boards
- Kuhlmann running the show (on budget & early)
- Recycle MINOS scanner, STAR cosmic test stand
- Install all this fall, tight, fallback complete fall 05 (was 06 with si)

Even More Practical

Preradiator panel assembly

Optical connectors on panel

crack

And They Work!

MIP peak on **STAR** stand confirms >16 pe through full preradiator optics

Source scan of crack detector on **MINOS** stand for cross talk study

Doing Physics in CDF

- Incredibly diverse and important physics program
- Large numbers of refugees from HERA & LEP, young, bright, enthusiastic, inexpert (where are the American aces?), training for LHC
- Our group are experts on using CDF data, central EM e/γ in particular but also tracking, material and scale issues etc.
- We tend to work with several analysis groups, eg Blair & Kuhlmann QCD/γ/searches, Nodulman mW/mt, Tanaka, Wicklund, etc. B physics
- As various CDF FTE shrinks and support roles remain, physics participation will be a challenge to maintain
- Sample keeps doubling, important to create good tools

Do Physics & Share Expertise with University Groups

- B Physics: Penn, CMU, Purdue, Tsukuba, Glasgow, Pitt, Okayama, FNAL
- Charm Physics: Wayne State
- W Physics: Toronto, Duke
- Top physics: Berkeley, Chicago, Waseda, FNAL, Liverpool
- Photon Physics: MSU, Geneva
- Dijet Optimizing: Rockefeller, Rutgers, Chicago, Berkeley
- Cal Ops: Rochester, UCLA, Wayne State, CMU, Purdue, Frascatti, FNAL, TAMU
- Trigger Ops: Michigan, Chicago, Yale, FNAL

Top Mass is Important

- Best leverage on EWK breaking
- Wicklund, Proudfoot,
 Nodulman, Kuhlmann are/have
 been scale experts
- Template, DLM fits now, D0 style coming
- Scale comparison with Run I is now fine but need better for Run II
- Tagging needs work SLT & SVX

New D0 Run I shifts things (174->179!)

Conference Results to Comprehensive Paper with Better Reconstruction (lepton + jet with > 1 Si b Tag

Template, Run I like A priori optimal 174.9 +7.1-7.7 ±6.5 GeV/c²

DLM fit ==4 jet $177.8 + 4.5 - 5.0 \pm 6.2 \text{ GeV/c}^2$

Double tags? SLT tags? Scale?

W Mass in Process Sample Competes with LEP

Use Ψ data to understand systematics, extrapolation in pT shows remaining material problem for latest version of tracking/reconstruction

Latest material map being installed

Corrected, ~2.5 years

Average time dependence is similar to run 1, stay closer online

Tower gains updated for run ranges

Response map trim simple, no sign of attenuation getting worse

@Duke

Unlike Run 1b so far we get consistent scale from Z mass and E/P. Constant EM resolution term 1.3%!

Simulation tools and systematic studies mostly in place, hope for result this summer

$J/\Psi => e^+e^-$ Material Calibration

- •SVX pairs reduce backgrounds from double conversions
- •Line shape (tail/peak) gives precise cross-check on Xo compare with E/p and Z=>e⁺e⁻ and new material map

CDF Semileptonic Lifetime Problem

Important step on the road to B_s mixing (Masa Tanaka)

- 4 GeV lepton/ SVT trigger (B=> μ D⁰ X)
- Independent cross checks
 - Reconstruction, K factor, trigger bias, Fitting framework
- Found: $429\pm7 \,\mu\text{m}$ (expect 486 μ m)

8 GeV Muon sample

- Reconstruct μ+D⁰ in Run II 8 GeV muon dataset (~180 pb⁻¹)
- No bias from SVT
- Same trigger as Run I
 analysis which gave correct
 lifetime
- 10% short B lifetime!
- $-432\pm10 \ \mu m \ (PDG: 488 \ \mu m)$
- D⁰ lifetime is ok
- $-124\pm5 \mu m$ (PDG: 128 μm

J/ψ inclusive Lifetime

We have done inclusive B lifetime measurement in $J/\psi \rightarrow \mu\mu$

- Artificially apply the SVT bias
 - One of the μ to be SVT
- Measure average B lifetime
 - Use parameterized template
 - 468<u>+</u>4 μm (w/o bias)
 - $-465\pm8 \mu m$ (w bias)
 - PDG: 471 μm
- Consistent with expectation

Independent Cross Check

- Use Signal likelihood based on parameterized template
 422±7 μm
- This and other cross checks give consistently 10% short lifetime
 - B physics group formed "B lifetime Task Force"
 Barry Wicklund, Manfred Paulini, Fumi Ukegawa, Andy Foland

B Studies Progress Toward B_s Mixing

Mixing studies require b flavor tagging, strength is εD^2 . So far we

Have:

Jet charge $0.42\pm0.02\%$

Same side $1.0 \pm 0.5\%$

Soft μ 0.66 ±0.19%

Soft e (in progress)

Kaon (TOF) (in progress)

B⁰ mixing

Current asymmetry results

B_s signal

Likelyhood function demo 2-4 GeV/c

Diphoton Production

Diphoton production is an interesting QCD process

Needs to be understood well for Higgs searches here and there

DIPHOX has 2→3 frag, not in RESBOS

CDF Run II Preliminary

CDF Run II Preliminary

Use silicon SVT two track trigger to find D^0 to $\pi\pi$, pions don't look like muons, best limit published <2.4 10^{-6} PRD **68** 091191 (2003)

More Local Physics b Cross Section (LeCompte et al.)

High b rates inspired quite an industry among theorists, notably including a sparticle interpretation:

E.L. Berger, B.W. Harris (Argonne), D.E. Kaplan (Argonne & Chicago U., EFI), Z. Sullivan, T.M.P. Tait (Argonne), C.E.M. Wagner (Argonne & Chicago U., EFI),. ANL-HEP-PR-00-116, Dec 2000. 4pp. Published in Phys.Rev.Lett.86:4231-4234,2001

Other work looked at fragmentation, NNLO, PDFs and notably good old K_T

Measurements have been a local industry, 1997 shown, always top 5-10% of p_T

- Modify dimuon trigger to allow ψ to $p_T=0$
- Measure ψ to $p_T=0$
- Use silicon to unfold b fraction
- Measure p_T integrated cross section for central $b\rightarrow \psi X$

Evolved QCD B Production Seems Sufficient Now

Revised PDFs help too

And charm looks pretty much the same

 σ B from Hb |y|<0.6 CDF-II 24.5 ±0.5 ± 4.7 nb σ B |y|<1 29.4 ±0.6 ± 6.2 μb cf NLO QCD MRAT2000 20+8-5 μb

Who Are We?

•	Bill Ashmanskas	SVT,Acc.	Dimuon decay	to CLEO
•	Bob Blair	Iso	QCD/γ search	ATLAS
•	Karen Byrum	Cal, SM, SM L2	B production	Veritas
•	Steve Kuhlmann	2b cal, Iso, SM	QCD/γ/Mjj-H	LC
•	Tom LeCompte	(μ)	B production	ATLAS
•	Larry Nodulman	CEM,Cal,SM,2b	Top/EWK/e/trig	ATLAS
•	Jimmy Proudfoot	Ops,Trigger,SM	EWK	ATLAS
•	Masa Tanaka	Ops, L2 Trig	B ID	
•	Bob Wagner	e Offline,CEM	EWK->B	NUMI, VQuarknet
•	Barry Wicklund	(B trig)	B trig strategy	LC, Atlas

Former physics group convener

Outlook

- All ANL/CDF members involved in other projects, many in ATLAS
- Lots of effort needed to get and keep things going: our stuff is doing well
- We respond to urgent needs e.g. Proudfoot, Tanaka deputy heads of ops & needs will grow
- CPR upgrade installs next (two?) fall shutdowns!
- Many TeV improvements pending: physics opportunity is (frustratingly) fabulous and just getting started
- Lots of good results will come!